
P r o p o s a l f o r N e w S o f t w a r e D i s k I n t e r f a c e P E - T I - 9 1 5

DATE: September 24, 1981

T O : R & D P e r s o n n e l

F R O M : R a n d y S y b e l

SUBJECT: Proposal for New Software Disk Interface

REFERENCE: None

KEYWORDS: Disks, Software

ABSTRACT

This paper is a proposal for a new software disk interface. This
proposal is a first step in moving some functionality from Primos to
the disk control ler.

RD&E CONFIDENTIAL

Proposal for New Software Disk Interface PE-TI-915

This paper is a proposal for a new software disk interface.
This proposal is a first step in moving some functionality from Primos
to the disk controller.

The present implementation in Primos involves 3 channel
programs. These are a Pre-seek channel program, a Stall loop, and the
Read/Write channel program. Also, Primos orders the requests so as to
achieve seek optimization.

The new interface allows much of the low level driver
funct ional i ty to be moved to the control ler. The structure for a
Read/Write request is now much simpler and takes up far less space in
main memory. It is structured as follows:

Opcode | Message length
i Unit Number

Track
R e c o r d | H e a d

Request number
(Reserved for new controllers)

This structure is used for reads, wr i tes, formats, wr i te
verifies, and the extended formatting commands. (Several of these are
new commands implemented only in the Rabbit disk controller and all
fu tu re con t ro l l e rs)

The way the new requesting scheme would work is as follows:
The disk driver would send the controller an OTA x17 (as is presently
done), with a pointer to the above data block. The controller would
fetch all words immediately and then go Ready again to accept more
requests. As many as 64 requests per disk unit could be made. (More
in future disk controllers). The controller orders these requests in a
seek optimization scheme (the same as the one Primos uses) for each
drive and starts all possible seeks.

When any seek is completed, the controller will store 2 words
in CPU memory and then interrupt. One of the stored words is an
interrupt type, and the other is the Request number from the command
block. The software must use this number to wire the user's buffer and
I /O window. The d isk cont ro l le r w i l l no t t rans fer da ta unt i l i t
receives a command stating which DMA channel and chain to use. The
controller would then transfer the data and interrupt on completion,
having stored at least 2 more words into CPU memory. These would be an
interrupt type (completion or error) and status.

The cont ro l le r wou ld then in ter rupt aga in w i th another
request (if any) as soon as it was ready for data transfer. This v/ould
continue until the internal queue was empty. Requests for the disk
controller can be sent at any time except during the actual data
transfer, when the controller would be Busy.

Page

Proposal for New Software Disk Interface PE-TI-915

Several other commands are needed by the controller. The DMT
setup and interrupt setup are run only once at initialization time, to
give the controller addresses for DMT transfers. The structure of
these is as follows:

Opcode
Memory Address

Opcode (dma)

The second command is the previously mentioned DMA command.
This tells the controller which DMA channel to use to transfer data,
and how many to chain together. The first command is used for both
Interrupts and DMT. For the interrupt, the appropriate opcode is used,
and the Memory Address is the Vector for the interrupt. For the DMT
command, using the appropriate opcode, the Memory Address is the
beginning of a data block, structured as such:

Request Number
Sta tus
Interrupt Type
Error correct ion
(4 words)

Presently, this interface is being tested on the Rabbit disk
control ler. The ini t ia l control ler used the standard disk interface,
and performance levels dropped. This interface is an attempt to
restore or exceed previous disk performance, and also to take a long
needed step to off-load Primos.

Initial tests, done unfortunately with test programs and not
a modified Primos version, have shown about a 30 percent improvement in
the d isk access ra te , in a random access tes t . The resu l t ing
performance is about equal to a standard SMD drive. This does not
realistically reflect an improvement under Primos, but it also does not
show the reduction in CPU time spent in the disk driver. When results
of test ing under Primos are avai lable, more real ist ic performance
levels can be stated.

This interface is by no means complete. It has been left as
flexible as possible for future expansion, but it also is not beyond
changes in its present form. It is hoped that the circulation of this
paper will produce responses that may help us to develop a better
i n t e r f a c e .

It should be noted that this is not an "intelligent disk
i n t e r f a c e " . T h i s i s a fi r s t s t e p t o w a r d s t h a t . T h i s c a n b e

Page

P r o p o s a l f o r N e w S o f t w a r e D i s k I n t e r f a c e P E - T I - 9 1 5

implemented without a large amount of design and software effort, and
can also be used as a learning experiment for how to design an
i n t e l l i g e n t i n t e r f a c e .

Commen ts on t h i s i n t e r f ace , p roposa l s , c r i t i ques , and
questions should be sent to Randy Sybel, x 3022, x.mail SYBEL.

Page

	1
	2
	3
	4

